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SUPERCAVITATING 2-D HYDROFOILS:
PREDICTION OF PERFORMANCE AND DESIGN

Spyros A. Kinnas

Ocean Engineering Group, Department of Civil Engineering
The University of Texas at Austin, Austin, TX 78712, USA
http://cavity.ce.utexas. edu, email: kinnasPmaiLutexas. edu

ABSTRACT

Recent numerical techniques for the prediction of cavitating flows, in linear and non-linear theories, are applied
on super-cavitating 2-D, 3-D hydrofoils and propellers. Some of these techniques, when incorporated within a
non-linear optimization algorithm, can lead to efficient super-cavitating hydrofoil or propeller designs. This
lecture will address 2-D supercavitating hydrofoils.

1 INTRODUCTION
High-speed hydrofoil or propeller applications can benefit considerably, in terms of efficiency, by operating

under super-cavitating, ventilating, or surface-piercing conditions, as shown in Fig. 1. A photograph from a
super-cavitating hydrofoil experiment that was performed at MIT's variable pressure Marine Hydrodynamics
Water Tunnel is shown in Fig. 2. Photographs of a modern surface-piercing propeller when out and in the
water are shown in Fig. 3.

Cavitating or free-streamline flows were first addressed in nonlinear theory via the hodograph technique
as introduced by Helmholtz, Kirchoff and Levi-Civita (Birkhoff & Zarantonello 1957)1. The cavity surface in
steady flow was taken as a steamline with constant pressure (thus, constant velocity). The first problems to be
addressed involved flows around bluff bodies at zero cavitation number.

The formulation of the cavitating flow around bodies at non-zero cavitation numbers created a lot of
diversity on the cavity termination models. Some of the first known models were the Riabouchinsky end-plate
model and the re-entrant jet model. Open wake models were introduced in an attempt to model the viscous
cavity wake (Fabula 1962, Tulin 1964, Yamaguchi & Kato 1983, Rowe & Blottiaux 1993, Kato 1994). Some of
the existing cavity termination models were already covered in previous lectures in this course.

Due to the difficulty of the hodograph technique in dealing with general body shapes, very few cases have
been treated analytically. The hodograph technique was extended numerically to treat arbitrary geometries
(Wu & Wang 1964) and later applied to the analysis of super-cavitating hydrofoils in the presence of a free
surface (Furuya 1975a). This method however, still could not treat general shape three dimensional geometries.

The linearized cavity theory was introduced by (Tulin 1953) and became quickly very popular, as proven
by the vast amount of publications2 which made use of it.

Unfortunately, the linearized theory for partially cavitating hydrofoils predicts that by increasing the thick-
ness of a hydrofoil, the extent and size of the cavity, for constant flow conditions, also increases. This contradicts
the fact that thicker hydrofoils have larger leading edge radii which are known to delay cavitation inception
and therefore are expected to develop smaller cavities. In addition, it is well known that linear theory grossly
overpredicts the cavity extent and volume, especially in the case of partial cavitation.

(Tulin & Hsu 1980) developed the short cavity theory by considering the cavitating flow as a small per-
turbation on the nonlinear fully wetted flow. Thus, the nonlinear foil thickness effects were included in this

'The list of references is located at the end of the second lecture of Prof. Kinnas.
'An extended list of which may be found in (Tulin & llsu 1980) or (Kinnas 1991).

Paper presented at the RTO A VT Lecture Series on "Supercavitating Flows ", held at the von Kcirman
Institute (VKI) in Brussels, Belgium, 12-16 February 2001, and published in RTO EN-O 10.
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Figure 1: Schematic of different types of high-speed hydrofoils.

Figure 2: Photo of a supercavitating hydrofoil experiment inside MIT's Marine Hydrodynamics Water Tunnel,
i/c z 3, from Kinnas & Mazel, 1993.
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Figure 3: Photos of a surface-piercing propeller Model 841-B (top), and one of its blades after it has entered the
free-surface, with leading edge detachment at Js = 0.9 (middle), and with midehord detachment at JS = 1.0
(bottom). For clarity, the blade has been outlined in the photos. From Olofsson (1996).
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formulation. This method predicted that by increasing the thickness of a partially cavitating hydrofoil, the size
of the cavity was reduced substantially for fixed flow conditions.

A nonlinear numerical method was employed to analyze cavitating hydrofoils by using surface vorticity
techniques and by applying the exact boundary conditions on the cavity and on the foil (Uhlman 1987, Uhlman
1989). An end-plate cavity termination model was implemented. A reduction in the size of the cavity as the foil
thickness increased was predicted, but not as drastic as that predicted in (Tulin & Hsu 1980). A surface vorticity
technique to deal with thick foil sections which employed an open cavity model was developed in (Yamaguchi
& Kato 1983). Similar boundary element method techniques were developed by (Lemonnier & Rowe 1988) and
by (Rowe & Blottiaux 1993). Potential based boundary element methods were finally applied by (Kinnas &
Fine 1991b, Kinnas & Fine 1993) and by (Lee et al 1992).

Three-dimensional flow effects around cavitating finite span hydrofoils were treated first in strip-theory via
matching with an inner two-dimensional solution within either linear (Nishiyama 1970, Leehey 1971, Uhlman
1978, Van Houten 1982) or non-linear theory (Furuya 1975b).

The complete three-dimensional super-cavitating hydrofoil problem was first treated in linear theory via a
numerical lifting surface approach based on the pressure source and doublet technique (Widnall 1966) and later
via a vortex and source lattice technique (Jiang & Leehey 1977). In the latter work, an iterative scheme was
introduced which determined the extent of the cavity by requiring the pressure distribution on the cavity to be
constant along the span (in addition to being constant along the chord). A variational approach for determining
the cavity planform was introduced in (Achkinadze & Fridman 1994).

Numerical boundary element methods within non-linear cavity theory were naturally extended to treat
super-cavitating 3-D hydrofoils (Pellone & Rowe 1981) and 3-D hydrofoils with partial cavities (Kinnas & Fine
1993) or cavities with mixed (partial and super-cavities) planforms (Fine & Kinnas 1993a). Similar methods
were also developed by (Kim et al 1994, Pellone & Peallat 1995).

The first effort to analyze the complete three dimensional unsteady flow around a cavitating propeller
subject to a spatially non-uniform inflow was presented in (Lee 1979, Lee 1981, Breslin et al 1982). A source
and vortex lattice lifting surface scheme was employed and the unsteady three dimensional linearized boundary
conditions were applied on the cavity. The cavity planform was determined at each blade strip and each time
step (i.e., blade angle) by searching for the cavity length which would produce the desired vapor pressure inside
the cavity. The effect of the other strips was accounted for in an iterative sense by "sweeping" along the spanwise
direction of the blade back and forth until the cavity shape converged. Similar methods were presented more
recently by (Ishii 1992, Szantyr 1994, Kudo & Ukon 1994).

Unfortunately, all these 3-D methods are hampered by the inherent inability of linear cavity theory to predict
the correct effect of blade thickness on cavity shape, as already mentioned. This deficiency was corrected in two
dimensions in (Kinnas 1985, Kinnas 1991), where the leading edge correction was introduced in the linearized
dynamic boundary condition on the cavity. The leading edge correction was subsequently applied to the three
dimensional propeller solution (Kerwin et al 1986, Kinnas 1992b).

Non-linear methods based on an assumed semi-elliptic cavity sectional shape have also been applied (Stern
& Vorus 1983) and (Van Gent 1994). Non-linear potential-based boundary element methods were finally applied
to cavitating propellers in non-uniform flows by (Kinnas & Fine 1992, Fine & Kinnas 1993b), and more recently
by (Kim & Lee 1996).

The inviscid cavity flow method was coupled with a boundary layer solver in the case of partial and super-
cavitating 2-D hydrofoils by (Kinnas et al 1994). This allowed for the inclusion of the viscous boundary layer
in the wake of the cavity and for determining the cavity detachment point based on the viscous flow upstream
of the cavity.

Reynolds-Averaged Navier-Stokes solvers have also been applied in the case of the prediction of attached
sheet cavitation on 2-D hydrodoils (Kubota et al 1989, Deshpande et al 1993). An overview of viscous flow
solvers applied to cavitating flows may be found in (Kato 1996). However, these methods appear to be best
suited for the prediction of cloud and or detached cavitation.

In these two lectures, linear and nonlinear methods for the prediction of super-cavitation on hydrofoils
and propellers will be summarized, and some comparisons with experiments will be presented. Non-linear
optimization techniques, applicable to the design of 2-D super-cavitating sections and super-cavitating propeller
blades, will be also presented.
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Dynamic Boundary Condition

Cavity Detachment (constant pressure condition) Cavity Closure Condition

L ki

(flow tangency condition)

c

Figure 4: Formulation of the inviscid cavity flow problem

2 2-D HYDROFOIL
2.1 Formulation

Consider the 2-D super-cavitating hydrofoil3 , as shown in Fig. 4. Assuming inviscid and irrotational flow,
the governing equation everywhere inside the fluid region is given by4:

V2=0 (1)

where 0 is the the perturbation potential defined from:

q = U± + VO (2)

where q is the total velocity vector in the flow. In order to uniquely determine 0, the following boundary
conditions are imposed:

"* On the wetted foil surface, the following kinematic boundary condition is applied, which requires the fluid
flow to be tangent to the surface of the foil. Therefore,

On__ 00 --U -n (3)

where n is the surface unit normal vector.

"* At infinity the perturbation velocities should go to zero.

VO -4 0 (4)

"* The dynamic boundary condition specifies constant pressure on the cavity, or (via Bernoulli equation)
constant cavity velocity qc:

q, = U00  Tr±+ (5)

where the cavitation number, o, is defined as:

= P- PC (6)

2 '0

pc, is the pressure corresponding to a point in the free-stream and p, is the pressure inside the cavity.
3 The application of the methods to partially cavitating hydrofoils is straight-forward and the reader can find more details in

(Kinnas 1998).
4 The cavity is assumed to detach at a known location on the foil. A criterion for determining this location will be discussed in

a later section.
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Figure 5: Supercavitating hydrofoil in linear theory.

The following conditions at the trailing edge of the cavity:

1. The cavity closes at its trailing edge. The inclusion of the viscous wake downstream of the cavity
will be addressed in a later section.

2. Near the trailing edge of the cavity, the pressure recovery termination model renders for the cavity
velocity, qt,•, over a transition region Ac:

qtr = U. V/1 -+Ocr [I f W~x] (7)

where f(x) is an algebraic function defined in (Kinnas T Fine 1993).

The problem of finding the cavitation number for given cavity extent, 1, will be addressed first in the context
of linear and nonlinear theories. A method for determining the cavity extent for given cavitation number will
be described in a later section.

2.2 Linear theories
In this section, the linearized cavitating hydrofoil problem is formulated in terms of singular integral equa-

tions with respect to unknown vorticity and source distributions. These integral equations are inverted analyt-
ically in the case of general shape supercavitating hydrofoils. The cavitation number, the vorticity and source
distributions are expressed in terms of integrals of quantities which depend only on the foil geometry and the

cavity length. The procedure is summarized here. The details are given in (Kinnas 1992a) and (Kinnas & Fine
1991a).

We define as u and v the perturbation velocities tangent and normal to the direction of the incoming flow
respectively, as shown in Figure 5. In the context of the linearized cavity theory the boundary conditions of the
corresponding Hilbert problem are:

The kinematic boundary conditions:
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v-=U" ; 0<x<1, y=0- (8)~dx

v =U. di. O<X<lD, y=0+ (9)
dx

The dynamic boundary conditions:

u+ = -7
-Uo; lD<X<l,y=O (10)
2

u = £U"O ; l<x<l, y=0- (11)
2

where qp (x) and qu(x) are the ordinates of the lower and upper hydrofoil surface, respectively, as shown in
Figure 5. These boundary conditions can be expressed in terms of vorticity and source distributions 5 -y(x) and
q(x), respectively, located on the slit x E [0, 1].

- q + (12)

+ IJ (13)2 27r•, --X

u- _ I 1 q(Od (14)

By using equations (10), (11), (13), and (14) it can easily be shown that:

'Y(x)=0; 1<x<l (15)

Finally, and with the use of the definitions:

7d q(a x)- q(x) (16)•(x)- aUd• x U•

the complete boundary value problem becomes:

1. Kinematic Boundary Conditions

- - ±( ) d - e-x O x<_= O (

+ f 0*(x) 1 <X < x I < 0 (17)2 271')
0
1

+ f -ý ='9 ;X 0 < X< ID , Y =0 (18)
0

2. Dynamic Boundary Condition

f2I <, X: =2 < I , Y = 0+(19)

0

3. Kutta Condition6

7(1) =0 (20)

5 With f designating the Cauchy principal value of the integral.
6 The application of a Kutta condition may seem unnecessary due to the requirement of a finite pressure, thus velocity, at the

foil trailing edge. Nevertheless, this condition is still required when inverting the integral equations.
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4. Cavity Closure Condition 7

J/q(x)dx = 0 (21)

0

where

0*=Il and 0* ld (22)1  or dx U or dx

2.2.1 Inversion of the Integral Equations - ID = 0
In the case of leading edge detachment (ID = 0), the singular integral equations of Cauchy type, (17) and

(19), can be inverted to produce expressions for the unknown or, 7(x) and q(x) in terms of the cavity length I
and the lower hydrofoil surface qp(x), as follows (Kinnas 1992a):

First, equation (19) is inverted with respect to the unknown q(x) (Muskhelishvili 1946) to produce:

j [:1:XJ' F - ý 7()dý 23

where use of equation (15) has been made. Notice that the expression (23) corresponds to the unique solution
to (19) which behaves like 1/V -- x at the trailing edge of the cavity ( Wu's singularity (Wu 1957) ). By
substituting equation (23) in (17) and by using the substitutions:

X=, . = 1 1 (24)

we arrive at the following singular integral equation of Cauchy type for 7:

1f •()d17 z e7(z) S(25)
2700 (1 +.q 2 )(z -q) 4(1±+z2) 2(1±+z2)

Inversion of equation (25) with respect to the variable (,)q/(1 + .2) renders finally:

7(z)- (1+ Z2) V t- Z f- V 77) (26)Z V 0 V t (216 )•-7 7 . d
Tr Z~j t (I1+r7 2)(Z-_,q)dr

Notice that 7(z) in equation (26) is the unique solution to (25) which satisfies the Kutta condition (20) at z = t.
The cavitation number or is determined by satisfying the cavity closure condition (21). First, by substituting

equation (23) in (21) and by using equation (15) we can get (Kinnas 1992a):

-7 '+ 7()d = 0, (27)

and by substituting equation (26) we can get the following general expression for or (Kinnas 1992a):

4or V/-2r4 Vj r 2 __±• ,l -- [ d,],
- r(r 2 + 1) t (I +,q 2 ) 2  Tx ] dq (28)

where: r = V/T+1t2 .
The source distribution can be derived by substituting equation (26) into equation (23) (Kinnas 1992a):

(z) = -t(Z) -+ tz (Vr r--1 - zvr 2  1)

V Z 2V/2r2

I1+ 2  t±+- tf w 0*(w)dcw1-__2tS ft Vt (_ O')Jd (29)

Tjz t- w (1 + W2 )(Z "+- (2)

7We apply the linearized cavity closure condition in which the cavity is required to have zero thickness at its trailing edge. The

present method can be extended to treat open cavities at the trailing edge with the openness of the cavity, possibly supplied from
further knowledge of the viscous wake behind the cavity. The effects of viscosity will be addressed at a later section.
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for z < t, and:

( Z) = i -tz (vr - I - zv 2 + 1)
z 2v/-r.2

1±+ t2 z f I (w)d
T z JO (I + (1W 2)(Z +W)

z-t (zvr-2 ±+ I + vr--)
z 2v'2r2

1l+ Z2 [Z--

t ft 0* e (w) dco( 0T V -Z Jo + W-C iJ-C2)(Z -- W) (0

for z > t.

2.2.2 Inversion of the Integral Equations - ID > 0

In this case, as shown in (Kinnas & Fine 1991a), equations (26), (29), and (30) still apply, after the following
substitutions are made:

replace 7 with T-2(u+-C ) ; 0<x<lID (31)

and

replace 0* with 0* + F (32)

with

F(x) (33)•-x

where u+ is the horizontal perturbation velocity on the wetted part on the suction side of the foil, divided by
uU'o. The value of u+ is determined by applying the kinematic boundary condition on the upper wetted part
of the hydrofoil, equation (9). This is equivalent to requiring that the value of q(x) for 0 < x < ID is equal
to the value of the thickness source in the case of wetted flow. A rather lengthy formula for u+, as well an
expression for the modified value of a are given in (Kinnas & Fine 1991a), and are not included in this lecture.

2.2.3 The cavity shape
The cavity thickness h(x), which also includes the foil thickness as shown in Figure 5, is determined, within

the framework of linearized theory, by integrating the equation:

uodh (4
U. X = q(x) (34)

The camber of the cavity in the wake, c(x), is determined by integrating the following equation:

dc
U.- = vw(x) for 1<x<l (35)

dx

where vw,(x) is the normal perturbation velocity in the wake, given as follows:

1 fl y(1)dý ; l<x<l, y=O (36)

By substituting equation (26) in (36) we can get v, in terms of the hydrofoil geometry (Kinnas & Fine
1991a):
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Vw(Z) tz+-z (VP - I -z r 2 ±• )
oU• V ~z 4'-•r.2

i1±z2  t±T+-_ zf':¢ e7(w)dw
2w vz• o t- (i+w 2 )(z+w)
z--t (zr 2 ±i± r 2 -- )

z 4Vr2.2
i+ z2 z--f t w 0* (w)dw

27 w fo t- W (I +W 2 )(Z)•( •)

The pressure distribution on the upper and lower cavity or foil surface is given, in the context of linear
theory, as follows:

C1 02rO X<,=+ (38)C1  -2 [xfJ~l; °<x<l, y=0~(8

02 2w_ )-x ; o<x<l,y=O- (39)

where Cp is the pressure coefficient defined as:

CP = P -Poo(0
PJCX (40)
2 0

2.2.4 Numerical Integrations
The integrals in equations (28), (26), (29) and (30) are computed numerically with special care taken at

the singularities of the integrands. We first define the transformation:

77=t sin2(') ; 0< _<•tand0<0<7r (41)

Next, we expess the involved integrals in terms of 0, thus avoiding the square root singularities of the
integrands at 7 = 0 and 77 = t. The numerical integrations are then performed by applying Simpson's rule with
K uniform intervals in 0.

To compute the principal value of the singular integral in equation (26), we first factor out the involved
singularity as follows (Kinnas 1992a):

___rt f(rj) d, f f()_f(z) (4

__ _ djw )(42)
wher t~q f (z)J. 7"(Ztzr, 7 0 V ~ Z-T)

where f (,q) 9 ( Notice that the integrand in the integral of equation (42) is not singular anymore, and
thus the integral is computed numerically by applying the same methodology described in the beginning of this
section. As shown in (Kinnas 1992a), Simpson's rule produces very accurate values for the integrals even with
five uniform intervals (K = 5).

2.2.5 The vortex/source-lattice method
A direct numerical method must be applied in the case of 3-D hydrofoils or propeller blades, as in (Lee

1979, Kinnas et al 1998a, Kosal 1999). In this case the involved integrals are disretized first, then the boundary
conditions are applied at some appropriately selected control points (C.P.s), and finally, the resulting system
of linear equations is inverted. The integrals in equations (17) and (19) are disretized over each segment i
by replacing -(•)dý with -yi(Xpv,+l - Xpv,), and q(ý)dý with qi(Xpsi+l - Xps•). Figure 6 shows two types of
arrangements for the discrete vortices and sources and the correpsonding control points.
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Figure 6: Half-cosine and full-cosine discretization scheme in the vortex/source-lattice method. The latter
allows for a better representation of typical camber lines for super-cavitating hydrofoils.
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Figure 7: Super-cavitaitng non-linear theory. Definition of cavity, (wetted) body, and wake surfaces. The cavity
sources in the wake are also shown in the case of the hybrid scheme.
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Figure 8: Super-cavitating hydrofoil. Definition of main parameters. Panel arrangement on the cavity and foil
shown for N = 80.

2.3 Nonlinear theories
A potential based boundary element method which has applied has been applied for the analysis of cavitating

hydrofoils in nonlinear cavity theory (Kinnas & Fine 1991b, Kinnas & Fine 1993, Fine & Kinnas 1993a), is
summarized here, with emphasis on super-cavitating hydrofoils. The perturbation potential on the combined
foil and cavity surface satisfies the following integral equation (Green's third identity):

Top 0 InR -lOln dS
JSWBUSC [On On

/w 0 n R (43)

Aw n dS

n is a unit vector normal to the foil or cavity surface, SWB is the wetted body (foil) surface, SC, the cavity
surface, and SW is the trailing wake surface, as shown in Fig. 7. R is the distance between a point, P, and the
point of integration over the wetted foil, cavity, or wake surface, as shown in Fig. 7.

The foil and cavity surface are discretized into flat panels, as shown in Fig. 8. The source and dipole
strengths are assumed constant over each panel. On the wetted foil surface, the source strengths, which are
proportional to 0O/On, are given by the kinematic boundary condition, equation (3). On the cavity, the dipole
strengths, which are proportional to 0, are determined from the application of the dynamic boundary condition
(5) and (7). For simplicity A = 0 for the rest of this paper; the complete derivation is given in (Kinnas &
Fine 1993). It should be noted that the length of the transition region A has been found to affect the results
only locally. In the case of A = 0 and when a large number of panels is used the formation of a re-entrant is
observed(Krishnaswamy 1999).

C = U s+.Vf + a- (44)
Os

where s is the arclength along the cavity surface (measured from the cavity detachment point), and s is the unit
vector tangent to the cavity surface. Integration of equation (44) renders the potential on the cavity surface:

0(s) = 0(0) - U -s + sU,,v-- -+a (45)

Where 0(0) is the potential at the leading edge of the cavity. In the numerical scheme 0(0) is expressed in terms
of the (unknown) potentials on the wetted part of the foil in front of the cavity.

The potential jump, A0q,, in the wake is determined via the following condition:
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A0 -- i= OCTE - OCTE (46)

where kCTE and OCTE are the potentials at the upper and lower cavity trailing edge panels, respectively. In
two dimensions the effect of the trailing wake surface is equivalent to the effect of a concentrated vortex at the
cavity trailing edge with strength equal to AO,,w.

The integral equation (43) is applied at the panel mid-points together with equations (46). The resulting
linear system of equations is inverted in order to provide the unknowns: (a) 0 on the wetted foil, (b) OO/On
on the cavity, and (c) the corresponding cavitation number or. The cavity shape is determined in an iterative
manner. In the first iteration the panels representing the cavity are placed on the foil surface directly under the
cavity. In subsequent iterations the cavity shape is updated by an amount h(s) (applied normal to the cavity
surface) which is determined from integrating the following ordinary differential equation 8 :

dh oq¢ (47)
SA= U -n+ ±--

In addition, the cavity closure condition is enforced by the following equation:
6L

h(SL) = J[U" -n 00 ds=0 (48)

0

SL is the total arclength along the cavity surface.
The predicted cavity shapes and cavitation numbers have been found to converge quickly with number of

iterations, especially in the case of super-cavitating hydrofoils.
This particular feature of the presented method makes it very attractive for 3-D and/or unsteady flow

applications, where carrying more than one iterations would increase the computation time substantially. In
fact the first iteration in the iterative scheme is determined by using the following hybrid scheme.

2.3.1 The hybrid scheme
In the case of 3-D hydrofoils and propeller blades, the following hybrid (combination of panel and source

lattice method) scheme has been developed (Fine & Kinnas 1993a). In this scheme the panels representing the
cavity are placed either on the foil surface underneath the cavity, SCB, or on the approximate wake surface,
Scw, as shown in Fig. 7. Equation (43) then becomes(Fine & Kinnas 1993a):

Top = [ nR- OlnR dS
"J f qw ln RdS - w AOWOnR dS

± , SW ISWUSW O nR

for P E SB (49)

and

27r+ = 7ZAw + j 0 In[ R - lnRnR] dS

" f qw ln RdS - fS AOwU w n dS
S, WS, USW On d

for P E Scw (50)

where SB = SWB U SCB is the surface of the whole foil, and qw is the cavity source in the wake surface given
as:

00+ 00- dhw (51)qw- O n n q' ds
8 As shown in (Kinnas & Fine 1993) this equation is equivalent to the kinematic boundary condition on the cavity surface.
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Figure 9: Predicted cavity trailing edge thickness and cavity shape for various cavity lengths at o = 1.097
(corresponding to I = 0.4). From Kinnas and Fine, 1993.

where hw is the cavity height measured normal to Scw, as shown in Fig. 7. The cavity height h is measured
normal to the foil surface for the part of the cavity that overlaps the foil, as also shown in Fig. 7.

The major advantage of the hybrid scheme is that it can apply to all, wetted, partially, and super-cavitating
flows alike by utilizing the same panel discretization. In fact this scheme, as described in later sections, is
applied on super-cavitating 3-D hydrofoils and propellers. In addition, this scheme has been found to predict
the expected non-linear effect of foil thickness on the cavity shape in the case of partial cavitation (Kinnas &
Fine 1993).

2.4 Cavity extent for given cavitation number
In the previous sections the cavity length was assumed to be known. In the case of linear theory, equation

28 can be inverted with respect to I for given o. In the case of nonlinear theories the method can still be applied
for the given or and various "trial" cavity lengths. In this case though, due to the fact that the cavitation number
is given (instead of being determined), the cavity closure condition, equation (48), or its equivalent hw(l) = 0
in the case of the hybrid scheme, will not be satisfied.

h(1;o) =_ hw(l) 0 0 (52)

This is shown for a partially cavitating hydrofoil in Fig. 9 where the predicted J and the cavity shapes for
fixed o and different values of cavity length are shown. An iterative scheme has been developed (Kinnas & Fine
1993) for determining the cavity extent for given o by searching for the cavity length, 1, for which the cavity
closes (within a specified tolerance) at its trailing edge9 :

S= 0 (53)

A comparison of predictions from applying the linear, the fully non-linear, and the hybrid cavity models to
a super-cavitating hydrofoil is shown in Figure 10. All theories, including the conventional linear theory, appear

9 An open cavity model can be readily implemented within this method by requiring the specified thickness at the cavity end.
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Figure 10: Comparison of predicted cavity shapes from linear (dashed), non-linear (solid) and hybrid (solid
with dots) theories for NACA16004 at a = 60. (dotted) linear; a/u = 0.44. From Fine and Kinnas (1993a).

to predict the cavity shape within satisfactory accuracy. Note that linear theory overpredicts the slope of the
cavity at the leading edge.

Finally, a comparison of predicted versus measured velocity profiles in the vicinity of a 2-D supercavity
is shown in Figure 11. In the prediction the wall effects have been included by using a sufficient number of
multiple images with respect to the horizontal tunnel walls (Kinnas & Mazel 1992).

2.5 Effects of viscosity
Consider a super-cavitating hydrofoil in viscous flow, as shown in Figure 12. We first solve the inviscid

cavity flow in non-linear theory (Kinnas & Fine 1991b). We then apply the boundary layer equations on the
compound foil, confined by the pressure side of the hydrofoil and the cavity boundary. A zero friction condition
is applied everywhere on the cavity, as shown in Figure 12. The effects of viscosity may be included by including
the following term on the right-hand side of equation 43:

+ f USW In Rds (54)

where the blowing sources, &, are defined from (Hufford et al 1994):

- dUeJ*
Sds (55)

where U, is the edge velocity (in this case the same as the velocity predicted by the panel method when applied
on the modified body that includes the displacement thickness) and P* is the displacement thickess, which is
determined from the boundary layer equations (Drela 1989).

Results from applying this method are shown in Figure 13. The resulting boundary layer displacement
thickness is shown at the top of the figure. The pressure distributions in inviscid and viscous flow are also
shown. Notice that viscosity has a very small effect on the pressure distribution. In other words, for super-
cavitation, the cavitation number in viscous flow for given cavity length, 1, is practically identical to that in
inviscid flow. It should be noted that in the case of partial cavitation the effects of viscosity are much stronger
than in the case of supercavitation (Kinnas et al 1994). The friction coefficient, Cf, on the pressure side of the
foil and cavity, is also shown at the bottom part of Figure 13.

The lift and drag on the hydrofoil are evaluated by integrating the pressure forces acting on all sides of the
hydrofoil (the constant cavity pressure is applied on the cavitating sides of the hydrofoil) as well as the frictional
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Figure 11: Numerical vs. experimental velocities as a function of the vertical distance from the cavity boundary
at different chordwise locations. From Kinnas and Mazel (1993).
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Figure 12: Super-cavitating hydrofoil with its boundary displacement thickness.
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Figure 13: Super-cavitating hydrofoil in inviscid and viscous flow at Re = 2 x 107. Cavity shape and boundary
layer displacement thickness (top); pressure distributions (middle); and friction coefficient on the pressure side
of the foil and cavity (bottom). All predicted by the present method.
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Figure 14: Cavity length, lift and drag coefficient versus cavitation number for a super-cavitating hydrofoil at
a = 30, in inviscid and viscous flow; predicted by the present method.
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N G V/c2 CL CD

100 0.145 0.365 0.282 0.0219

160 0.146 0.364 0.287 0.0223

200 0.146 0.363 0.292 0.0231

Table 1: Convergence of viscous cavity solution (o, V/c 2 , CL and CD) with number of panels. Super-cavitating
hydrofoil; T/c = 0.045, fl/c = 0.015, p = 0.85, a = 3'.
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p q
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Figure 15: The main parameters in the design of a super-cavitating hydrofoil.

forces acting on the wetted side of the hydrofoil. The convergence of the cavity solution and the predicted forces
with number of panels is given on Table 1.

Finally the predicted or, CL, and CD vs. I curves are shown in Figure 14, for a super-cavitating section in
inviscid flow and for two Reynolds numbers'0 . The super-cavitating section is a combination of a NACA 4digit
camber form (with the maximum camber f, at x = p) and a linear thickness form. The effect of viscosity on
lift coefficient is shown to be very small.

3 DESIGN OF SURER-CAVITATING SECTIONS
3.1 Statement of the problem

We must determine the cavitating hydrofoil geometry and its operating condition (angle of attack, a), which
produces the minimum drag, D, for specified design requirements.
The parameters that define the geometry of a super-cavitating hydrofoil, also shown in Figure 15, are:

"* the chord, c

"* the maximum camber, fo, on the pressure side

"* the location of the maximum camber, fp

The design requirements taken into consideration in this paper are

1°Based on 1.
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"* Sectional lift, Lo(N/m)

"* Uniform forward velocity of the foil, U, (m/s)

"* Cavitation number, c0, defined as usual:

P7 -P;J (56)

where p is the fluid density, p,, is the ambient pressure, and pv is the vapor pressure.

"* Minimum section modulus of the foil, zmi

"* Acceptable cavity length, I

"* Acceptable cavity volume, V, or cavity height, h

The condition on the cavity length is necessary in order to avoid unstable cavities, usually being the long
partial or the short super-cavities. The cavity volume/height constraints ensures acceptable positive cavity
thickness (volume) in order to avoid very thin cavities (also negative thickness cavities) which are either non-
physical or may turn into harmful bubble cavitation.

3.2 The hydrodynamic coefficients
The hydrofoil lift, L, and drag, D, acting on the hydrofoil, as shown in Figure 15, can be expressed in terms

of lift and drag coefficients, CL and CD, respectively:

12L = -IpU CCL (57)

2D = ½puiQCC (58)

The drag coefficient, CD, may be decomposed into two components.

CD = Cb + Cjj (59)

where Cb is the inviscid cavity drag coefficient, and Cb is the viscous drag coefficient.
For known hydrofoil geometry, angle of attack, a, and cavity length, 1, any hydrodynamic or cavity quantity,

Q (CL, Cb, o7, V/c 2 ,....), may be expressed as follows:

Q = Q(a, nondimensional foil geometry, 1/c) (60)

Inviscid analysis methods are used to determine Q. The analytical formulas of (Hanaoka 1964) could have
been used. These expressions though are based on linearized cavity theory, which has been found to overpredict
the cavity length and size substantially, especially in the case of partial cavitation. Instead, in this work the
already described numerical non-linear cavity analysis method is utilized (Kinnas & Fine 1991b, Kinnas & Fine
1993). The shape of the cavity surface is determined in non-linear theory iteratively, with the use of a low-order
potential based panel method. The (inviscid) forces are determined by integrating the pressures along the foil
surface.

The viscous drag is determined by assuming a uniform friction coefficient, Cf, over the wetted part of the
foil. Cf is expressed in terms of the Reynolds number (Re = Uc/lv, v : kinematic viscosity) via the ITTC
formula (Comstock 1967):

0.075Cf = (logioRe - 2)2(61)

During the optimization process, the chord length (also the Reynolds number) is not known, thus the value
of Cf is updated at each optimization iteration.

Since only the lower surface of the foil determines the hydrodynamics of supercavitating flows, the thickness
is not included as a parameter. The upper surface can be placed anywhere arbitrarily inside the cavity. Thus,
when computing the section modulus of a foil, the upper cavity surface is considered as the upper surface of the
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"compound" foil. It is reasonable to assume that the cavity always starts at the leading edge of the foil, since
the supercavitating sections have a sharp leading edge. Furthermore, we deal with situations where the cavity
detaches at the trailing edge of the foil on the pressure side. For the case of supercavitating sections, in addition
to specifying the minimum section modulus of the compound section, the minimum allowable cavity height at
the 10% of the chord length from the leading edge is specified via an inequality constraint. This ensures positive
cavity thickness, as well as sufficient local strength at the sharp leading edge of the foil.

The relevant coefficients are expressed as follows:

CL = CL(a,fo/c, fp/c,l/c)

Cb = Cb(a,fo/c, fp/c,l/c)
o = u(a, folc, fplc, l1c)

V/c 2  = V/c2 (a,,fo/c, fp/c,l/c)
z/c 3  = z/c 3 (a, fo/c, fp/c,l/c)

h1 o/c = h1 o/c(a, fo/c, fp/c, i/c)

where h1o is the cavity height at the 10% of the chord length from the leading edge of the foil. Note that the
section modulus is a function of all the geometry variables including the cavity length, whereas it is independent
of the cavity length in the case of partial cavitation.

The coefficients are computed, as in the case of partial cavitation, for a number of foil geometries by using
the analysis method of (Fine & Kinnas 1993a). The coefficients are again expressed by using second degree
polynomials in terms of all the geometric parameters. For example,

C C C ±CA (fo)2

±CL 9 & = CL1a + ±C L1 1 a-±+CL4 -

C cCe c

--- + CL-,, + CL1 5  (62)
C C C C

where,

-' 1 (63)
C 1- (C/1)2 + I -- (C/1)2

The variable transformation from i/c to I'/c is done knowing that CL and CD are linear in I'/c for the
super-cavitating flat plate in linear theory, as described by (Geurst 1960). This transformation has been found
to improve the accuracy of the interpolation substantially. The effect of the number of The accuracy of the
interpolation for CD may be seen in Figures 16.

3.3 The optimization problem
Consider the following general nonlinear optimization problem:

minimize f (x)

subjectto gi(x) <0 i=1,2,..,m
hi(x)=0 i=1,2,...,i (64)

where f(x) is the objective function defined on RZ. x is the solution vector of n components. g1 (x) <
0,---, gm.(x) < 0 are inequality constraints defined on R'Z and hi(x) = 0, h, h,(x) = 0 are equality constraints
also defined on R'.

The solution vector is defined as (n = 5):

x = [a, c, fo, fp, 1]T (65)
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The constraints are (m = 3,1 = 2)

hi(x) = L(x)-Lo=0 (66)

h2 (x) = O(x)-O0=0 (67)

g+ (x) = - I + <0 (68)
C ri

g2 (x) - z(x) Zin < 0 (69)

g3 (x) - hi o(x) + (± o _< 0 (70)C \C !rain

3.4 The numerical optimization method
The method of multipliers is applied in which, first each of the inequality contraints, gi (x) • 0, is converted

into an equality constraint with the introduction of the new variable, si:

gj(x) + s? = 0 (71)

Then the augmented Langrangian penelty function is formed (Mishima & Kinnas 1996):

F ( x l , . . ., s1 , . . . , /k l , . .. , ý 1 , ---, ý c l ,. . . , 5ý 1 ,. . .) =

D(x) + ±Aihi(x)+ + A[gi(x) + s?]

±Ecih?(x) + +aigi(X) + 8?]2 (72)

where A• and A, are the Langrange multipliers, and ci and ýi are penalty parameters. The parameters of the
problem, the additional parameters (si), the Langrange multipliers, and the penalty parameters are determined
by minimizing function F. A technique to minimize F is described in great detail in (Mishima & Kinnas 1996).

3.5 Effect of the initial guess on the optimum solution
In general, a nonlinear optimization problem is initial guess dependent. In other words, if there exist more

than one local minimum to the objective function, any one of these minima may be obtained depending on the
initial condition. Due to the special structure of the problem, no multiple solutions were found for the range of
cavitation numbers that we studied. This uniqueness is attributed partly to the fact that the involved functions
are quadratic, i.e. not wavy, and partly to the fact that the range of the solutions is known, so that a reasonable
initial guess can be selected. Figure 17 shows that several different initial guesses lead to the same solution.

3.6 Results
A NACA 4 digit camber form and the Johnson five-term camber form are used. The NACA 4digit camber

form (Abbott & Von Doenhoff 1959) has two parameters, which are the maximum camber fo/c and the location
of the maximum camber fp/c, as shown in Figure 15. The values for the constraints are:

(l) =1.15 (- =) 0.01 Zrn)= 7 x 10-5 (73)c rain C rain ( c3]

The method is applied for fixed lift (L0 = 30, OOON/m) and for a range of cavitation numbers between
0.15 and 0.7 (corresponding to approximate speeds of 70 and 30 knots, respectively") for partial and super-
cavitating conditions. The resulting L/D for both cases are shown in Figure 18. As expected, for "low" o a
supercavitating section has larger L/D than a partially cavitating section, and the reverse holds for larger or.
Optimum partially and supercavitating sections are also shown in Figure 18.

Finally, we show in Figure 19, contour plots of LID for optimum sections, designed by the present method,
over a range of combinations of required lift and cavitation number. This graph is intended to help the designer
decide as to what is the best solution (partially or supercavitating section), depending on the requirements.

"The cavitation number is inversely proportional to the square of the speed of the hydrofoil, for fixed ambient pressure and
temperature conditions.
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3.7 Comparison of the present to existing design methods
The designed sections, under given requirements, are compared to those designed from other methods.

These methods are based on either the Tulin two-term or the Johnson five-term sections, given next:

=- + 3 c -- 4 c (Tulin two-term) (74)

(Johnson five - term) (75)

where A1 is a parameter that relates the geometry to the lift coefficient.
As the number of terms included in the series increases, the loading moves towards the trailing edge. A

useful formula for the finite cavitation number correction is given by (Ohba 1963/1964) as follows.

CL[= 10 L 0"854 2 +12600 (76)

where CL is the required lift coefficient and CL,=o0 is the lift coefficient for zero cavitation number.
In Figure 20, the lift to drag ratio, L/D, is shown for the NACA 4dgt sections designed by the present

method, Tulin's two-term sections, and Johnson's five-term sections, for various cavitation numbers. In the
same figure we also show the L/D for the optimum Johnson section as designed by the present method. The
corresponding lift coefficients are shown in Figure 21. For the design of Tulin sections and Johnson sections,
the cavitation number and the lift coefficient are both specified, whereas in the present method, the cavitation
number and the lift are given and the lift coefficient is determined as part of the solution. A representative

section and its corresponding pressure distribution is shown in Figure 22.

3.8 Application to 3-D elliptic planform hydrofoils
As shown in (Kinnas et al 1995), a super-cavitating hydrofoil with elliptic planform and similar sections

along its span (that are only scaled by the chord), can be designed by designing an equivalent 2-D section. If c
and s, are the maximum chord and span of the elliptic wing, the equivalent 2-D lift is given from:

4
L2D = L3D (77)

If D2D is the corresponding minimum value of the drag then D3D will be given as:

L 3D 78 0 D (78)
D3D= 1/2pU ± +--D- 

(T+)
The above equation can be re-written as:

D3D L3D D2D

L3D 1/2pU,2s, L2D

Equation (79) implies that (L/D)3D will always be smaller than (L/D)2D, i.e. the 3-D hydrofoil will always
be less efficient than the 2-D hydrofoil.

The actual angle of attack a3D will be related to that determined from the 2-D equivalent optimization
problem as:

a3D = a2D + 1/2pUL3sD (80)
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Figure 16: Accuracy of the interpolation : Supercavitation (CD vs a), Range of parameters: a = 0.3 - 4.0 deg
(6 points), fo/c = 0.0 - 0.05 (6 points), fp/c = 0.7 - 0.9 (5 points), i/c = 1.1 - 1.3 (4 points)
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Figure 17: Sensitivity of the optimum solution on initial guesses, L = 30, O00(N/m), r = 0.6, U, = 18.2(m/s)
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Figure 18: L/D for partially or super-cavitating foils designed by the present method; LO 30, OOON/m.
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Figure 19: Contour plots of LID for partially or super-cavitating foils designed by the present method.
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Figure 20: Comparison of L/D between designed sections and existing sections (L = 30000(N/m), zmi!c =
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Figure 21: Comparison of CL between designed sections and existing sections (L = 30000(N/m), zmin!c 3 =

7.0 x 10-5 (supercavitating)
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Figure 22: Optimum supercavitating section and corresponding pressure distribution; designed by the present
method (Johnson five-term camber : L = 30000(N/m), a = 0.2, zmin/c 3 = 7.0 x 10-5)


